skip to main content


Search for: All records

Creators/Authors contains: "Brun, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Droplet crystals can form when marrying 3D printing to fluidic instabilities. 
    more » « less
  2. The concomitant mechanical deformation and solidification of melts are relevant to a broad range of phenomena. Examples include the preparation of cotton candy, the atomization of metals, the manufacture of glass fibers, and the formation of elongated structures in volcanic eruptions known as Pele’s hair. Usually, solid-like deformations during solidification are neglected as the melt is much more malleable in its initial liquid-like form. Here we demonstrate how elastic deformations in the midst of solidification, i.e., while the melt responds as a very soft solid (G100Pa), can lead to the formation of previously unknown periodic structures. Namely, we generate an array of droplets on a thin layer of liquid elastomer melt coated on the outside of a rotating cylinder through the Rayleigh–Taylor instability. Then, as the melt cures and goes through its gelation point, the rotation speed is increased and the drops stretch into hairs. The ongoing solidification eventually hardens the material, permanently “freezing” these elastic deformations into a patterned solid. Using experiments, simulation, and theory, we demonstrate that the formation of our two-step patterns can be rationalized when combining the tools from fluid mechanics, elasticity, and statistics. Our study therefore provides a framework to analyze multistep pattern formation processes and harness them to assemble complex materials.

     
    more » « less
  3. Abstract

    Natural materials are highly organized, frequently possessing intricate and sophisticated hierarchical structures from which superior properties emerge. In the wake of biomimicry, there is a growing interest in designing architected materials in the laboratory as such structures could enable myriad functionalities in engineering. Yet, their fabrication remains challenging despite recent progress in additive manufacturing. In particular, soft materials are typically poorly suited to form the requisite structures consisting of regular geometries. Here, a new frugal methodology is reported to fabricate pixelated soft materials. This approach is conceptually analogous to the watershed transform used in image analysis and allows the passive assembly of complex geometries through the capillary‐mediated flow of curable elastomers in confined geometries. Emerging from sources distributed across a Hele–Shaw cell consisting of two parallel flat plates separated by an infinitesimally small gap, these flows eventually meet at the “dividing lines” thereby forming Voronoi tesselations. After curing is complete, these structures turn into composite elastic sheets. Rationalizing the fluid mechanics at play allows the structural geometry of the newly formed sheets to be tailored and thereby their local material properties to be tuned.

     
    more » « less